CiLo Charging

Optimized integration of charging, logistics, energy and
traffic management for the operation of electric vehicles in
logistics depots close to cities

City Logistics Charging (CiLo Charging)

City Logistics Charging (CiLo Charging)

The project focuses on the development, prototypical implementation and evaluation of a corresponding solution both in a simulation and in a field trial at the site of a newly built terminal. Leading partners are working in the individual domains together with recognized research institutions to develop an optimized, flexible and demand-oriented solution for requirements-based integration.

Process

The CiLoCharging project aims to enable an optimized, flexible and demand-oriented solution for the use of electric vehicles in the distribution service of a logistics terminal from an economic, technical and environmental perspective by taking into account the requirements from the domains of energy, logistics, charging infrastructure and mobility management. In order to be able to adequately take into account the framework conditions typical for general cargo logistics and to ensure the scalability of the fleet terminals in an economical manner, both charging management must be integrated into the existing logistics processes and smart energy management must be provided for integrating electrified logistics terminals into the electrical distribution network.

Application of CityMoS in CiLo Charging Project

The use of a powerful simulation platform enables the cost-efficient exploration of large parameter space and the analysis of a wide variety of what-if scenarios. CityMoS serves as the digital twin of the entire logistics operation including depot, fleet vehicles, other traffic and in the target area (Frankfurt am Main). The covered topics include:
  • Study of various fleet parameters (fleet composition, vehicle types, cargo space, battery sizes)
  • Study of various depot parameters (number of charging stations, charging speed, auxiliary consumers)
  • Research into the effect of second-life battery use as local energy storage
  • Evaluation of novel vehicle-to-grid communication
  • Connect to existing fleet management tools
  • Analysis of all fleet relevant metrics (delivery delay, electricity costs, etc.)
In collaboration with: